盒子
盒子
文章目录
  1. 相关概念
    1. 基础类型
    2. 位运算符
    3. 进制转换
  2. BitMap实现原理
  3. BitMap源码
  4. BitMap应用
  5. BitMap问题

BitMap的JAVA实现

相关概念

基础类型

在java中:

byte  ->   8 bits  -->1字节
char -> 16 bit -->2字节
short -> 16 bits -->2字节
int -> 32 bits -->4字节
float -> 32 bits -->4字节
long -> 64 bits -->8字节

位运算符

在java中,int数据底层以补码形式存储。int型变量使用32bit存储数据,其中最高位是符号位,0表示正数,1表示负数,可通过Integer.toBinaryString()转换为bit字符串,

// 若最高的几位为0则不输出这几位,从为1的那一位开始输出
System.out.println(Integer.toBinaryString(10));
System.out.println(Integer.toBinaryString(-10));
// 会输出(手工排版过,以下的输出均会被手工排版):
1010
11111111111111111111111111110110

左移<<

5<<2=20

首先会将5转为2进制表示形式: 0000 0000 0000 0000 0000 0000 0000 0101  
然后左移2位后,低位补0: 0000 0000 0000 0000 0000 0000 0001 0100  
换算成10进制为20

右移>>

5>>2=1

还是先将5转为2进制表示形式:0000 0000 0000 0000 0000 0000 0000 0101 
然后右移2位,高位补0: 0000 0000 0000 0000 0000 0000 0000 0001
换算成十进制后是1

无符号右移>>>

5>>>3

我们知道在Java中int类型占32位,可以表示一个正数,也可以表示一个负数。正数换算成二进制后的最高位为0,负数的二进制最高为为1。对于2进制补码的加法运算,和平常的计算一样,而且符号位也参与运算,不过最后只保留32位。

-5换算成二进制: 1111 1111 1111 1111 1111 1111 1111 1011
-5右移3位: 1111 1111 1111 1111 1111 1111 1111 1111 // (用1进行补位,结果为-1)
-5无符号右移3位: 0001 1111 1111 1111 1111 1111 1111 1111   // (用0进行补位,结果536870911 )

位与&

第一个操作数的的第n位于第二个操作数的第n位如果都是1,那么结果的第n为也为1,否则为0

5转换为二进制:0000 0000 0000 0000 0000 0000 0000 0101
3转换为二进制:0000 0000 0000 0000 0000 0000 0000 0011
------------------------------------------------------------
1转换为二进制:0000 0000 0000 0000 0000 0000 0000 0001

位或|

第一个操作数的的第n位于第二个操作数的第n位只要有一个为1则为1,否则为0

5转换为二进制:0000 0000 0000 0000 0000 0000 0000 0101
3转换为二进制:0000 0000 0000 0000 0000 0000 0000 0011
-------------------------------------------------------------------------------------
6转换为二进制:0000 0000 0000 0000 0000 0000 0000 0111

对于移位运算,例如将x左移/右移n位,如果x是byte、short、char、int,n会先模32(即n=n%32),然后再进行移位操作。可以这样解释:int类型为32位,移动32位(或以上)没有意义。

同理若x是long,n=n%64。

左移和右移代替乘除

a=a*4;
b=b/4;

 可以改为

a=a<<2;
b=b>>2;

  说明:
  除2 = 右移1位 乘2 = 左移1位
  除4 = 右移2位 乘4 = 左移2位
  除8 = 右移3位 乘8 = 左移3位
  … …
  类比十进制中的满十进一,向左移动小数点后,数字就会缩小十倍,在二进制中满二进一,进行右移一次相当于缩小了2两倍,右移两位相当于缩小了4倍,右移三位相当于缩小了8倍。通常如果需要乘以或除以2的n次方,都可以用移位的方法代替。   
  实际上,只要是乘以或除以一个整数,均可以用移位的方法得到结果,如:
  a=a9
  分析a
9可以拆分成a(8+1)即a8+a1, 因此可以改为: a=(a<<3)+a
  a=a
7
  分析a7可以拆分成a(8-1)即a8-a1, 因此可以改为: a=(a<<3)-a
  关于除法读者可以类推, 此略。
  【注意】由于+/-运算符优先级比移位运算符高,所以在写公式时候一定要记得添加括号,不可以 a = a*12 等价于 a = a<<3 +a <<2; 要写成a = (a<<3)+(a <<2 )。

与运算代替取余

31转换为二进制:011111,0,31
32转换为二进制:100010 与31取交集的结果是:10转换为十进制为2
31转换为二进制:100001 与31取交集的结果是:01转换为十进制为1
30转换为二进制:011110 与31取交集的结果是:11110转换为十进制为30
29转换为二进制:011101 与31取交集的结果是:11101转换为十进制为29
33转换为二进制:100001 与31取交集的结果是:1转换为十进制为1

31转换为二进制后,低位值全部为1,高位全为0。所以和其进行与运算,高位和0与,结果是0,相当于将高位全部截取,截取后的结果肯定小于等于31,地位全部为1,与1与值为其本身,所以相当于对数进行了取余操作。

进制转换

  • 0x开头表示16进制,例如:0x2表示:2,0x2f表示48
  • 0开头表示8进制,例如:02表示:2,010表示:8
Integer.toHexString(int i)   // 十进制转成十六进制
Integer.toOctalString(int i) // 十进制转成八进制
Integer.toBinaryString(int i)// 十进制转成二进制
Integer.valueOf(m,n).toString() // 把n进制的m转换为10进制

BitMap实现原理

在java中,一个int类型占32个字节,我们用一个int数组来表示时未new int[32],总计占用内存32*32bit,现假如我们用int字节码的每一位表示一个数字的话,那么32个数字只需要一个int类型所占内存空间大小就够了,这样在大数据量的情况下会节省很多内存。

具体思路:

1个int占4字节即4*8=32位,那么我们只需要申请一个int数组长度为 int tmp[1+N/32]即可存储完这些数据,其中N代表要进行查找的总数,tmp中的每个元素在内存在占32位可以对应表示十进制数0~31,所以可得到BitMap表:

tmp[0]:可表示0~31

tmp[1]:可表示32~63

tmp[2]可表示64~95

…….

那么接下来就看看十进制数如何转换为对应的bit位:

假设这40亿int数据为:6,3,8,32,36,……,那么具体的BitMap表示为:

bitMap.jpg

如何判断int数字在tmp数组的哪个下标,这个其实可以通过直接除以32取整数部分,例如:整数8除以32取整等于0,那么8就在tmp[0]上。另外,我们如何知道了8在tmp[0]中的32个位中的哪个位,这种情况直接mod上32就ok,又如整数8,在tmp[0]中的第8 mod上32等于8,那么整数8就在tmp[0]中的第八个bit位(从右边数起)。

BitMap源码

private long length;
private static int[] bitsMap;
private static final int[] BIT_VALUE = {0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020,
0x00000040, 0x00000080, 0x00000100, 0x00000200, 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000,
0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000, 0x00800000,
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000};

public BitMap2(long length) {
this.length = length;
/**
* 根据长度算出,所需数组大小
* 当 length%32=0 时大小等于
* = length/32
* 当 length%32>0 时大小等于
* = length/32+l
*/
bitsMap = new int[(int) (length >> 5) + ((length & 31) > 0 ? 1 : 0)];
}

/**
* @param n 要被设置的值为n
*/
public void setN(long n) {
if (n < 0 || n > length) {
throw new IllegalArgumentException("length value "+n+" is illegal!");
}
// 求出该n所在bitMap的下标,等价于"n/5"
int index = (int) n>>5;
// 求出该值的偏移量(求余),等价于"n%31"
int offset = (int) n & 31;
/**
* 等价于
* int bits = bitsMap[index];
* bitsMap[index]=bits| BIT_VALUE[offset];
* 例如,n=3时,设置byte第4个位置为1 (从0开始计数,bitsMap[0]可代表的数为:0~31,从左到右每一个bit位表示一位数)
* bitsMap[0]=00000000 00000000 00000000 00000000 | 00000000 00000000 00000000 00001000=00000000 00000000 00000000 00000000 00001000
* 即: bitsMap[0]= 0 | 0x00000008 = 3
*
* 例如,n=4时,设置byte第5个位置为1
* bitsMap[0]=00000000 00000000 00000000 00001000 | 00000000 00000000 00000000 00010000=00000000 00000000 00000000 00000000 00011000
* 即: bitsMap[0]=3 | 0x00000010 = 12
*/
bitsMap[index] |= BIT_VALUE[offset];

}
/**
* 获取值N是否存在
* @return 1:存在,0:不存在
*/
public int isExist(long n) {
if (n < 0 || n > length) {
throw new IllegalArgumentException("length value illegal!");
}
int index = (int) n>>5;
int offset = (int) n & 31;
int bits = (int) bitsMap[index];
// System.out.println("n="+n+",index="+index+",offset="+offset+",bits="+Integer.toBinaryString(bitsMap[index]));
return ((bits & BIT_VALUE[offset])) >>> offset;
}

BitMap应用

  1. BitMap小小变种:2-BitMap。

看个小场景:在3亿个整数中找出不重复的整数,限制内存不足以容纳3亿个整数。

对于这种场景我可以采用2-BitMap来解决,即为每个整数分配2bit,用不同的0、1组合来标识特殊意思,如00表示此整数没有出现过,01表示出现一次,11表示出现过多次,就可以找出重复的整数了,其需要的内存空间是正常BitMap的2倍,为:3亿*2/8/1024/1024=71.5MB。

具体的过程如下:

扫描着3亿个整数,组BitMap,先查看BitMap中的对应位置,如果00则变成01,是01则变成11,是11则保持不变,当将3亿个整数扫描完之后也就是说整个BitMap已经组装完毕。最后查看BitMap将对应位为11的整数输出即可。

  1. 已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。 (可以理解为从0-99 999 999的数字,每个数字对应一个Bit位,所以只需要99M个Bit==1.2MBytes,这样,就用了小小的1.2M左右的内存表示了所有的8位数的电话)

BitMap问题

BitMap 的思想在面试的时候还是可以用来解决不少问题的,然后在很多系统中也都会用到,算是一种不错的解决问题的思路。

但是 BitMap 也有一些局限,因此会有其它一些基于 BitMap 的算法出现来解决这些问题。

  • 数据碰撞。比如将字符串映射到 BitMap 的时候会有碰撞的问题,那就可以考虑用 Bloom Filter 来解决,Bloom Filter 使用多个 Hash 函数来减少冲突的概率。
  • 数据稀疏。又比如要存入(10,8887983,93452134)这三个数据,我们需要建立一个 99999999 长度的 BitMap ,但是实际上只存了3个数据,这时候就有很大的空间浪费,碰到这种问题的话,可以通过引入 Roaring BitMap 来解决。

参考链接

Bitmap的秘密

支持一下
扫一扫,支持sustcoder
  • 微信扫一扫
  • 支付宝扫一扫